Water Level Monitoring Networks & Analysis of Data for Assessing DFCs

August 30, 2017

- Monitoring Network Design & Implementation
 - Coverage
 - Defensibility
- Role of Monitoring Network
 - GCD Management Strategies
 - Analysis of Monitoring Data

- Monitoring Network Design & Implementation
 - <u>Coverage</u>

How do you get Good Coverage with your Monitoring Network?

- Defensibility
- Role of Monitoring Network
 - GCD Management Strategies
 - Analysis of Monitoring Data

In a perfect world....

S:\AUS\PosGCD_master\TAGD_2017\MonitoringWellNetwork.mxd

Strategy #1: Maximize Stakeholder Participation

- Awareness

Advertisements

- Incentives

Groundwater Well Assistance Program Conversion of abandoned/plugged O & G wells

Issues to Consider

- Monitoring agreement
- Long-term access to well
- Maintenance of equipment
- Changes in well ownership
- Cost & liability (P13 forms for O & G conversions)

Social Media

Post Oak Savannah Groundwater Conservation District Published by Megan Homeyer [?] - July 31 at 4:43pm - 🚷

Are you interested in adding your well to the POSGCD Well Monitoring Network? Find more information here: http://posacd.org/resources/monitoring-network/

118 people	e reached	Boost Post
Like	Comment A Share	۰.
🖒 Jeff Bla	ckmon and Vanessa Vallejo	
w	ite a comment	0009

Brochures & Handouts

WELL MONITORING NETWORK

Many of the wells in the District's Monitoring Network are wells that landowners have volunteered to be in the program. This partnership helps the District in many ways.

Post Oak Savannah GCD's Management Plan and Rules are created and implemented based on the health of the aquifers, which is measured by water levels. These water level measurements are taken from the wells in the Monitoring Network and show where the current water level is at in relation to past and future predicted levels.

Having more monitoring wells is essential to better understand the aquifers and gain insights on how pumping is impacting water levels in specific areas.

Two main benefits for landowners who are considering adding their well to the monitoring network are a more accurate reading of water levels at their location

Tupical Monitoring Well

and a better understanding of how pumping in and around the District impacts their wells If you have a well that you would like to add to the Network contact the POSGCD office by email admin@posged.org Sanos Genes Accars or phone (512) 455-9900. To learn more about -WELL the program, you can also check out

the POSGCD website at www.posgcd.org/resources/ monitoring-network

COLLECTED DATA

What does the District do with collected data?

Data collected from the wells will be used by the District to monitor aquifer health. Becasue the water level measurements collected from the Monitoring Network serve as a reflection of the health of our aquifers, the District will use the data to make informed management decisions and rule amendments that might be needed to ensure the protection and conservation of our local groundwater resources.

Data will also be used to populate the state's Groundwater Availability Models to help the District understand aquifer characteristics

REQUIREMENTS

Participants' wells shall be registered or permitted with Post Oak Savannah GCD If a well is not registered or permitted, the owner will be asked to fill out the appropriate forms or applications to complete the required process.

Besides the registration or permit, no other agreements or forms are needed to participate in the program. However, if the District is required to expend funds to utilize your well (i.e., conversion of oil and gas well, installation of a pressure transducer, etc.), the owner will be asked to sign a Monitoring Well Agreement with the District

By volunteering your well in the Network, you are giving Post Oak Savannah GCD permission to enter onto your property and access your well. The well will be measured by the District using standard procedures that are consistent

with procedures used by the every precaution to make sure that their procedures MEASURING WELLS

The District makes a conscious effort to notify owners when they plan to conduct measurements on wells - either by prior notification or a friendly knock on the door

Texas Water Development Board. The District takes Typically, the District measures wells in the program once a year during February and March. If requested by the owner, or at the District's do not contaminate determination, wells may be measured on a more any wells. frequent basis.

Strategy #1: Maximize Well Owner Participation

- Awareness

Advertisements

- Incentives

Groundwater Well Assistance Program Conversion of O & G wells

Issues to Consider

- Monitoring agreement
- Long-term access to well
- Maintenance of equipment
- Changes in well ownership
- Cost & liability (O & G conversions)

Strategy #2:

Cooperation with Other GCDs

- GMA-wide participation
- more Aquifer coverage

Issues to Consider

- Differences in sampling schedules or procedures
- Access to wells & data

Strategy #3: Use wells from other existing regulatory programs

- TCEQ
- Railroad Commission (ex. wells from Alcoa Mine closure

Issues to Consider

- Transition period
- Access to wells & data

S:\AUS\PosGCD master\TAGD 2017\MonitoringWellNetwork.mxc

Strategy #4: Drill your own wells

- Work with stakeholders for land/access:

County / City → roads, parks, buildings TxDoT → road easements

- O & G well conversions
- 2" non-pumping Monitoring wells

Issues to Consider

- Drilling costs
- Maintenance & monitoring costs
- Long-term access to wells & equipment

- Monitoring Network Design & Implementation
 - Coverage
 - Defensibility
- Role of Monitoring Network
 - GCD Management Strategies
 - Analysis of Monitoring Data

Scientific

Public Perception

- Monitoring Network Design & Implementation
 Is your Monitoring Network defensible?
 - Coverage

- Defensibility

- Role of Monitoring Network
 - GCD Management Strategies
 - Analysis of Monitoring Data

Legal

Strategy #1 : Monitoring Protocols

- Official forms & record-keeping
- Standardized procedures by Measurement Type Air line E-line Steel tape Acoustic Transducers

Issues to Consider:

Consistency across GMAs & TWDB Snapshot vs. Continuous Measurements Training – role of TAGD?

POSGCD Measurement Form

owner			Address :	0				-	*	act o	
and Surface E	levation :	<u>)</u>	County:	÷						Eso	
Vell Location:	Lat: Long:	<u>वि</u> वि		Phone:				PATER CO	DNSERVATION		
ump:	Type: Setting:	Choose One	ft.	Depth:	-	<mark>ft.</mark>					
Remarks:				M.P.	83 <mark></mark>				-99		
Date of Current Measurement	Current Dept to Water From Land Surface	Change in Level Since Last Static Measurement	Dept to Water From MP	мр	Measuring Agency	Measuring Method	Use	Field Observations	User I.D.	Called Ahead?	When was Well last pumped?
Current Measurement	Dept to Water From	Level Since Last Static	Water	MP	1999-2002-2009-100-750	TRANSFERRICATION	Use	12/12/2420	User I.D.		Well last
Current Measurement	Dept to Water From	Level Since Last Static	Water	MP	1999-2002-2009-100-750	TRANSFERRICATION	Use	12/12/2420	User I.D.		Well last
Current Measurement	Dept to Water From	Level Since Last Static	Water		1999-2002-2009-100-750	TRANSFERRICATION	Use	12/12/2420	User I.D.		Well last
Current Measurement	Dept to Water From	Level Since Last Static	Water		1999-2002-2009-100-750	TRANSFERRICATION	Use	12/12/2420	User I.D.		Well last
Current Measurement	Dept to Water From	Level Since Last Static	Water		1999-2002-2009-100-750	TRANSFERRICATION	Use	12/12/2420	User I.D.		Well last
Current	Dept to Water From	Level Since Last Static	Water		1999-2002-2009-100-750	TRANSFERRICATION	Use	12/12/2420	User I.D.		Well last

Strategy #1 : Monitoring Protocols

- Official forms & record-keeping
- Standardized procedures by Measurement Type Air line E-line Steel tape Acoustic Transducers

Issues to Consider:

Consistency across GMAs & TWDB Snapshot vs. Continuous Measurements Training – role of TAGD?

Strategy #2 : Aquifer Assignment Methodology

- Methodology for assigning wells to aquifers
 GAM surfaces
 Well logs
 Aquifer response
- Transparent & accessible documentation of aquifer assignments

Issues to Consider:

Consistency across GMAs Consistency with TWDB Multi-screen wells

Strategy #2 : Aquifer Assignment Methodology

- Methodology for assigning wells to aquifers
 GAM surfaces
 Well logs
 Aquifer response
- Transparent & accessible documentation of aquifer assignments

Issues to Consider:

Consistency across GMAs Consistency with TWDB Multi-screen wells

Strategy #3 : Well Information Confirmation

- Correct well location
- Accurate depth and screen information from drillers logs and/or video logs
- Confirmation that well is working and not contaminated (water quality)

Issues to Consider:

Unavailable/unreliable well logs Additional GCD mapping needs/costs

360° view: Verify Condition of Screen

Down-hole View:

Verify Depth to Screen

Strategy #3 : Well Information Confirmation

- Correct well location (ex. geo-tagging)
- Accurate depth and screen information from drillers logs and/or video logs
- Confirmation that well is working and not contaminated (water quality)

Issues to Consider:

- Unavailable/unreliable well logs
- Additional GCD mapping needs/costs

Online mapping allows :

- Stakeholders to verify well locations & information
- Transparency in GCD Monitoring
- Easy distribution of Monitoring Data

- Monitoring Network Design & Implementation
 - Coverage
 - Defensibility
- Role of Monitoring Network
 - GCD Management Strategies
 - Analysis of Monitoring Data

- Monitoring Network Design & Implementation
 - Coverage
 - Defensibility

How is your Monitoring Network used for GCD Management ?

- Role of Monitoring Network
 - GCD Management Strategies
 - Analysis of Monitoring Data

Monitoring Network

Role #1 : **Development of DFCs**

- Feasibility/defensibility of demonstrating DFC compliance
- Determine realistic aquifer subdivisions
- Help identify reasonable DFC ranges
- Identify GAM improvements

Issues to Consider:

- Consistency across GMA

Role #2 : Identify additional District issues

- Streams, surface water/groundwater interaction
- Hydrologically sensitive areas
- Local stakeholder concerns

Issues to Consider:

- Non-DFC protections (ex. shallow Protective Drawdown Limits or PDLs)

- Additional monitoring needs & costs

Role # 3 : Determine DFC compliance

- Specified in District Management Plan/Rules
- Monitoring thresholds

Issues to Consider:

- Consistency across GMA
- Insufficient monitoring coverage
- Uncertainty analysis
- Costs
- Enforceability

From POSGCD Management Plan

15. MANAGEMENT GOALS, OBJECTIVES, & PERFORMANCE STANDARDS

15.9 Desired Future Conditions (DFCs)

Management Objective:

1. At least once every three years, the District will monitor water levels and evaluate whether the change in water levels is in conformance with the DFCs adopted by the District. The District will estimate total annual groundwater production for each aquifer based on the water use reports, estimated exempted use, and other relevant information, and compare these production estimates to the MAGs listed in Table 8-1.

Performance Standard:

- At least once every three years, the general manager will report to the Board the measured water levels obtained from the monitoring wells within each Management Zone, the average measured drawdown for each Management Zone calculated from the measured water levels of the monitoring wells within the Management Zone, a comparison of the average measured drawdowns for each Management Zone with the DFCs for each Management Zone, and the District's progress in conforming with the DFCs.
- At least once every three years, the general manager will report to the Board the total permitted production and the estimated total annual production for each aquifer and compare these amounts to the MAGs listed in Table 8-1 for each aquifer.

Role # 3 : Determine DFC compliance

- Specified in District Management Plan/Rules
- Monitoring thresholds

Issues to Consider:

- Consistency across GMA
- Insufficient monitoring coverage
- Uncertainty analysis
- Costs
- Enforceability

- Monitoring Network Design & Implementation
 - Coverage
 - Defensibility
- Role of Monitoring Network
 - GCD Management Strategies
 - Analysis of Monitoring Data

- Monitoring Network Design & Implementation
 - Coverage
 - Defensibility

How can you analyze & use Monitoring Data effectively ?

- Role of Monitoring Network
 - GCD Management Strategies
 - Analysis of Monitoring Data

Using Monitoring Data

Goal # 1 : Sound Science

- Account for data availability
- Consider several different methods (+/-)
- Test for sensitivity and bias

Issues to Consider:

- Missing data
- Anomalous data
- Consistency across GMA

Using Monitoring Data

- Different Spatial Analyses

Points vs. Groups vs. Areas

- Different Time Periods

Seasons vs. Years vs. Moving averages

- Different Well Selection

All wells with water levels in either endpoint year

VS.

Only wells that overlap between endpoint years

- Different Spatial Analyses

Points vs. Groups vs. Areas

- Different Time Periods

Seasons vs. Years vs. Moving averages

- Different Well Selection

All wells with water levels in either endpoint year

VS.

Only wells that overlap between endpoint years

Yearly:

3-year Moving Average:

- Different Spatial Analyses

Points vs. Groups vs. Areas

- Different Time Periods

Seasons vs. Years vs. Moving averages

- Different Well Selection

All wells with water levels in either endpoint year

VS.

Only wells that overlap between endpoint years

Interpolating Values Across Areas: Simsboro (more wells in 2012 than in 2000)

Comparison Between DFC and Calculated Average Drawdown from 2000 to 2012

Selected Method

- 1) Area Averages
- 2) 3-year Period
- 3) 2000 & 2012 Water Levels

Aquifer	Managem ent Zone	Desired Future Condition Average ¹	Number of Wells with Three-year Average				Average Based on Measured Water Levels in Same Wells in POSGCD from 2000 to 2012				Average Based on Interpolated Points			Percent of
			2000		2012		Number of	Straight	Group by	Four Zones in	All 2000	Only Wells Common to	DFC Compliant ⁴	Average Drawdown of
			POSG CD	All	POSG CD	All	Wells	Average		Shallow	Wells and All 2012 Wells	2000 and 2012 ²		DFC⁵
Sparta	Shallow	10	0		0		0	na	na	na	22.2	3.6	yes	36.0%
	Entire	30	3	12	6	27	3	4.6	4.6		33.6	3.5	yes	11.7%
Queen City	Shallow	10	4		5		4	2.5	3.0	3	12	3.1	yes	31.0%
	Entire	30	5	12	9	24	5	2.8	3.2		17.3	3.1	yes	10.3%
Carrizo	Shallow	20	0		1		0	na	na	na	7.7	6.5	yes	32.5%
	Entire	65	1	7	4	11	1	10.1	10.1		33.9	6.7	yes	10.3%
Calvert Bluff	Shallow	20	8		17		7	9.2	9.1	11.2	-11.1	0	yes	0.0%
(Upper Wilcox)	Entire	140	11	18	20	33	11	-1.7	-7.5		-6	-11.4	yes	-8.1%
Simsboro (Middle	Shallow	20	12		19		12	8.9	7.8	6	12	9.6	yes	48.0%
Wilcox)	Entire	300	14	31	29	71	14	3.5	-0.4		20.3	11.1	yes	3.7%
Hooper (Lower Wilcox)	Shallow	20	4		9		4	5.9	5.9	5.6	40	6.2	yes	31.0%
	Entire	180	5	6	11	25	5	7.4	7.4		84.5	7.1	yes	3.9%
Vogua lackcon	Shallow	15	0		0		0	na	na	na	na	na	unknown	unknown
	Entire	100	1	9	4	27	1	7.3	7.3		12.3	16.4	yes	16.4%
Brazos River	Milam	5					0	na					unknown	unknown
Alluvium	Burleson ³	6					7	4.5	5.0	5.1			yes	81.1%

¹ all DFCs are from Jan. 2000 to Dec. 2059 except the BRAA DFC, which is from Jan. 2010 to Dec. 2059

 $^{\rm 2}$ best estimate of calculated average drawdown from 2000 to 2012

³ number of wells from 2010 to 2014

⁴ likely is based on review of all available data; insuff. data requires additional information

⁵ Threshold Level 1 criteria is 60%

Goal # 2 : Simple & Reproducible Analysis

- Clear methodology defined by District
- Transparent decision-making
- Possible for independent checks

- Stakeholder involvement
- Easiest ≠ Best

Goal # 3 : Evaluation of District Goals

- Role of monitoring network defined in Rules or Management Plan
- Thresholds for action

- Non-ideal datasets
- Action after meeting threshold

Water ford County Line chowbor (Burnd) Lind Streenen Zore

45

Goal # 3 : Evaluation of District Goals

- Role of monitoring network defined in Rules or Management Plan
- Thresholds for action

- Non-ideal datasets
- Action after meeting threshold

Goal # 3 : Evaluation of District Goals

- Role of monitoring network defined in Rules or Management Plan
- Thresholds for action

- Non-ideal datasets
- Action after meeting threshold

Goal # 4 : Enforcement of District Goals

- GCD Rules
 - Well spacing Production rates Management zones
- Board Actions

Permitting Well Assistance

Legal Decisions

- Mitigation

- Consistency within GMAs
- 3rd party review

