Future Considerations for DFCs

Future Considerations for DFCs

- Restrict Aquifer Area used to calculate DFCs
 - Convert shallow PDLs to DFCs
 - Omit far down-dip regions with no wells
- Water levels instead of Drawdown
- New interpolation methods to better link monitoring to model results

Considerations for Establishing DFCs: Restricting Aquifer Area Used for DFCs

- Monitoring data where aquifers are deep will be nonexistent to sparse
- Large areas of down-dip region of aquifers will not be pumped for next 30 years
- Remove portions of the aquifer that are deep and expensive to monitor and that have no pumping
- Focus on area of aquifer where pumping is occurring and there are adequate number of monitoring wells

Examples of Trimming Aquifer Area for DFC: Simsboro

Considerations for Establishing DFCs and PDLs: Water Level Instead of <u>Drawdown</u>

- Options for Evaluation of Water Levels
 - at POSGCD wells
 - areas selected to be representative of aquifer
 - entire aquifer
- Routine for Interpolating Monitoring Data Is Important Component of Method
 - Interpolation is difficult because of sparseness of data and impacts of pumping, faults, and differences in aquifer properties
 - Need an interpolation method that can extract a pattern from simulated GAM water levels and used that pattern to interpolate between the measured water levels
 - One such routine is co-kriging. INTERA has successfully used co-kriging water levels with topographic data to help map elevation surfaces of water tables

Simsboro Water Levels (ft msl)

Shallow Simsboro Water Levels (ft msl)

Comparison of Interpolation Methods for Determining an Average Water Level (ft, msl)

- POSGCD wells –average all wells in POSGCD
- Three methods used to interpolate points in between POSGCD and then average all of the points
 - Kriging often used by geologists
 - Topo2raster often used by geographers
 - Artificial Intelligence new type of program that looks for patterns

GAM

- Area thickness of model cell is ignored
- Volume thickness of model cell is considered

The differences among the values for an aquifer reflects the amount of uncertainty there exists solution is better interpolation approach

	2010						
Aquifer	POSGCD wells	Interpolated			GAM		
		Kriging	Topo 2 Raster	AI Method	Area	Volume	
Yegua-Jackson	214	215	207	210	NA	NA	
Sparta	263	264	260	252	259	241	
Queen City	304	312	295	312	293	276	
Carrizo	308	318	295	325	296	292	
Calvert Bluff	298	290	273	282	300	290	
Simsboro	329	264	253	255	256	242	
Hooper	336	311	292	319	303	293	

	2018						
	POSGCD wells	Interpolated			GAM		
Aquifer		Kriging	Topo 2 Raster	AI Method	Area	Volume	
Yegua-Jackson	215	215	214	216	NA	NA	
Sparta	259	238	239	223	243	244	
Queen City	299	289	270	284	282	262	
Carrizo	267	289	253	264	233	225	
Calvert Bluff	284	264	235	263	244	226	
Simsboro	324	230	212	215	173	152	
Hooper	345	308	277	310	234	212	

Interpolation Methods

- Methods that are reproducible
- Methods that are transparent and accessible to others

☐ Interpolation

Kriging

Spline

Trend

H Local

Natural Neighbor

Spline with Barriers
Topo to Raster
Topo to Raster by File

- Built-in ArcGIS tool
- Powerful statistical interpolation method
- Accepted throughout Geosciences field
- Based on Covariance analysis (coorelations)
- Can create "ugly" surfaces

TopoToRaster

- Built-in ArcGIS tool
- Iterative finite-different interpolation method
- Accepted throughout Geoscience/Hydrology field

Based on slopes and gradients

Creates "pretty" hydrologically-correct surface

Concept for using Co-kriging to Generate Water Level Surfaces

Comparison of Kriged and Co-Kriged Surfaces

Kriged 2010 Simsboro Water Level

Co-Kriged 2010 Simsboro Water Level

Comparison of Measured and Modeled Water Levels

Kriging (original)

Co-Kriging (corrected)

	Original	Corrected
Mean error	-2.10	0.12
Abs mean error	29.42	7.86
RMSE	33.91	9.69

Historical Pumping

Potential Uses

- Update GAMs beyond 2010 to support interpolation approaches and groundwater
- Update GAMs beyond 2010 to provide improve predictions for DFC runs
- Develop relationships between pumping and drawdown for different management zones
- Track production versus permitted pumping

GMA 12 Discussion Topics

- Sharing Monitoring Protocols and Data among Districts
- Approaches for Evaluating DFC Compliance
- Future Consideration for DFCs
- Schedule for Updating Historical Pumping

