Irrigation

Alternatives

for Rainfall

Harvesting

Questions You Should Ask ...

- 1. What do I want to irrigate?
- 2. How much water do I need?
- 3. Do I have enough storage?
- 4. What type(s) of irrigation product(s) will I use?
- 5. How much pressure and flow is needed?

Questions You Should Ask ...

- 6. Do I need a pump?
- 7. How do I select the right pump for my application?
- 8. Do I need a pressure tank?
- 9. What other components do I need?
- 10. How can I make every drop count?

What are you irrigating?

How many gallons storage capacity is required to supplement rainfall for your intended use?

- Plant type
- Growing season
- Site micro-climates
- Square footage

Think about peak water use

We tend to think in inches, but need to convert to gallons

Gallons = Inches x square feet x 0.6234

Inches = *Gallons* \div *square feet* \div 0.6234

Square feet = Gallons \div Inches \div 0.6234

Example: I want to apply 1" of water per week to a 10' x 10' flower bed. How many gallons do I need?

Gallons = Inches x square feet x 0.6234

Gallons = 1 in. x 100 sqft x 0.6234

 $Gallons = 62.34 \ per \ week$

Example: I want to apply 0.5" of water per week to a 30' x 40' lawn. How many gallons do I need?

Gallons = Inches x square feet x 0.6234

Gallons = 1 in. x 1,200 sqft x 0.6234

 $Gallons = 748.08 \ per \ week$

Example: I want to apply 1" of water per week to a 20' x 20' vegetable garden. How many gallons do I need?

Gallons = Inches x square feet x 0.6234

Gallons = 1 in. x 400 sqft x 0.6234

Gallons = 249.36 per week

Do you have enough storage?

Example: Assume you have a 500 gallon tank. How many inches of water is this over a 40' x 50' area?

Inches = *Gallons* \div *square feet* \div 0.6234

Inches = $500 \ gal \div 2,000 \ sqft \div 0.6234$

Inches = 0.19

Example: Assume you have a 3,000 gallon tank. How many inches of water is this over a 30' x 30' area?

Inches = *Gallons* \div *square feet* \div 0.6234

Inches = $3,000 \ gal \div 900 \ sqft \div 0.6234$

Inches = 5.34

What type(s) of irrigation product(s) will I use?

What type(s) of irrigation product(s) will I use?

Typical Application Rates

Typical Run Times

How much pressure and flow is needed?

Product	Pressure Range	Flow Rate Range	
Rotors/Impacts	40 - 70 psi	1 - 5 gpm	
Pop-up sprays	30 - 40 psi	1 - 4 gpm	
Micro-sprays	15 - 30 psi	0 - 2 gph	
Drip tubing	15 - 30 psi	0.2 - 2 gph	
Drip insert emitters	10 - 20 psi	0.2 - 20 gph	
Drip tape	5 - 20 psi	0.25 - 0.50 gph	
Soaker hose	5 - 30 psi	0.5 - 1 gph	

psi = pounds per square inch
gpm = gallons per minute
gph = gallons per minute

gph = gpm ÷ 60
gpm = gph x 60

Do you need a pump?

How much pressure do I need? VS How much pressure do I have?

Product	Pressure Range	Flow Rate Range	
Rotors/Impacts	40 - 70 psi	1 - 5 gpm	
Pop-up sprays	-up sprays 30 - 40 psi		
Micro-sprays	15 - 30 psi	0 - 2 gph	
Drip tubing	15 - 30 psi	0.2 - 2 gph	
Drip insert emitters	10 - 20 psi	0.2 - 20 gph	
Drip tape	5 - 20 psi	0.25 - 0.50 gph	
Soaker hose	5 - 30 psi	0.5 - 1 gph	
		1	

Static pressure (psi) = Feet of water in tank ÷ 2.31

Do you need a pump?

Static pressure = pressure of water at rest

Static pressure = 9 feet head, or 3.89 psi

Elevation head = distance between bottom of tank to point of water discharge

Elevation head = +10 feet, or +4.32 psi

Total pressure available = 8.21 psi

Static pressure (psi) = Feet of water in tank ÷ 2.31

Do you need a pump?

Static pressure = pressure of water at rest

Static pressure = 9 feet head, or 3.89 psi

Elevation head = distance between bottom of tank to point of water discharge

Elevation head = -10 feet, or -4.32 psi

Total pressure available = -0.43 psi

Two Ways to Create More Pressure

How do I select the right pump for my application?

Submersible

Surface

Piston

Transfer pumps – Low pressure, high flow. Used to move water from one tank to another.

Pressure pumps – High pressure, low flow. Used to supply water for pressurized irrigation systems.

How do I select the right pump for my application?

Submersible

Surface

Piston

Centrifugal – a wide range of pressure and flow rates. Generally designed to "push" water, not "pull" water.

On-demand pumps start and stop automatically when a faucet or value is opened, and shuts off when the tank is low to prevent dry-running.

How do I select the right pump for my application?

Submersible

Surface

Piston

Positive displacement pump – move water using internal gears or pistons. Produce high pressure at low flow rates.

May be suitable for small rain barrels and open-ended water hoses.

What is a pump curve?

Source: Rainwater Management Solutions

Calculating Required Flow Rate

Add up the total <u>gallons per minute (GPM)</u> needed for the section to be irrigated at one time.

Example: Spray Heads

📄 1 ga

1 gallon per minute

2 gallons per minute

Calculating Required Flow Rate

Add up the total <u>gallons per minute (GPM)</u> needed for the section to be irrigated at one time.

Example: Drip Tubing

Total No. Emitters = (500 ft x 1 emitter per ft) = 500 emitters

Total GPH = 500 emitters x 0.9 gal per emitter = **450 GPH**

Total GPM = 450 GPH÷ 60 min/hr = **7.5 GPM** 500 FT drip tubing, 12" emitter spacing,0.9 gallons per hour per emitter

Reading a Pump Curve

Source: Rainwater Management Solutions

The total amount of pressure required by the pump to meet the needs of the water application device (sprinkler, drip tubing, etc.)

$$TDH = h_p + h_e + h_f$$

h_p = operating head (pressure) required by the irrigation device (ft)

h_e = elevation difference between the pump and the irrigation device (ft)

h_f = friction loss in the system (ft)

$$TDH = h_p + h_e + h_f$$

h_p = operating head (pressure) required by the irrigation device (ft)

Product	Pressure Range	Flow Rate Range	
Rotors/Impacts	40 - 70 psi	1 - 5 gpm	
Pop-up sprays	30 - 40 psi	1 - 4 gpm	
Micro-sprays	15 - 30 psi	0 - 2 gph	
Drip tubing	15 - 30 psi	0.2 - 2 gph	
Drip insert emitters	10 - 20 psi	0.2 - 20 gph	
Drip tape	5 - 20 psi	0.25 - 0.50 gph	
Soaker hose	5 - 30 psi	0.5 - 1 gph	

$$TDH = h_p + h_e + h_f$$

h_e = elevation difference between the pump and the irrigation device (ft)

 $TDH = h_p + h_e + h_f$

h_f = friction loss in the system (ft)

Depends on component size, material, and flow rate (gpm) of water traveling through pipe.

Rule of Thumb

For properly sized PVC pipe and distance < 100 feet, assume $h_f = 30\%$ of operating pressure.

Example: If operating pressure is 40 psi, then $h_f = (0.30 \times 40 \text{ psi})$

12 psi (or 27.72 feet head)

What is a "properly sized" pipe?

Schedule 40 PVC Pipe Class 200 PVC Pipe

Nominal Pipe Size	Maximum Recommended Flow Rate (GPM)	Maximum Recommended Flow Rate (GPM)	Water Velocity (ft/sec)
1/2"	4.4	5.9	5
3⁄4"	7.9	10.1	5
1″	13.0	16.7	5
1 ¼"	22.6	26.9	5
1 ½"	30.9	35.4	5
2"	51.3	55.5	5
Total Dynamic Head (TDH)

$TDH = h_p + h_e + h_f$

 $h_p = (20 \text{ psi x } 2.31) = 46.2 \text{ feet head}$ $h_e = 3 \text{ feet head}$ $h_f = (46.2 \text{ ft x } 0.3) = 13.86 \text{ feet head}$

TDH = 63.06 feet head

Source: Rainwater Management Solutions

Grundfos MQ 3-45 1 HP Pressure Boosting Pump

Source: Rainwater Management Solutions

Total Dynamic Head (TDH)

$TDH = h_p + h_e + h_f$

 h_p = (50 psi x 2.31) = 115.5 feet head h_e = 3 feet head h_f = (115.5 ft x 0.3) = 34.65 feet head

TDH = 153.15 feet head

Source: Rainwater Management Solutions

Leader EBS 1250 1HP Pressure Booster Pump

- I plan to use stored rainwater to irrigate a vegetable garden located approximately 50 feet from my cistern.
- The garden is approximately 20 feet wide by 150 feet long.
- The garden elevation is about 4 feet higher than the bottom of my cistern.
- I plan to use Techline pressure compensating drip tubing with 12-inch emitter spacing.
- Emitter flow rate is 0.9 GPH at an operating pressure of 20 psi.
- Row spacing is 2 feet apart and drip tubing will be placed at the top of each row.

STEP 1: CALCULATE FLOW RATE (GPM)

9 rows x 150 ft/row = 1,350 ft drip tubing

1,350 ft x 1 emitter/ft = 1,350 emitters

1,350 emitters x 0.9 GPH/emitter = 1,215 GPH

1,215 GPH ÷ 60 = **20.25 GPM**

STEP 2: CALCULATE TOTAL DYNAMIC HEAD (FT)

 $TDH = h_p + h_e + h_f$

 $h_p = (20 \text{ psi x } 2.31) = 46.2 \text{ feet head}$

 $h_e = 4$ feet head

h_f = (46.2 feet x 0.3) = 13.86 feet head

TDH = **64.06 feet head**

RainFlo MHP75A 3/4 HP Automatic Pump

What is a "properly sized" pipe?

Flow rate = 20.25 GPM

	Schedule 40 PVC Pipe	Class 200 PVC Pipe	
Nominal Pipe Size	Maximum Recommended Flow Rate (GPM)	Maximum Recommended Flow Rate (GPM)	Water Velocity (ft/sec)
1/2"	4.4	5.9	5
3/4"	7.9	10.1	5
1"	13.0	16.7	5
1 ¼"	22.6	26.9	5
1 1⁄2″	30.9	35.4	5
2"	51.3	55.5	5

Do I need a pressure tank?

Stores pressurized water to prevent the pump from cycling on and off to meet small demands. It also supplies a constant pressure.

What other components do I need?

Pressure regulators

Pressure regulators

Pressure regulated valve

Pressure gauge

Filters

Filters

What other components do I need?

Flow indicator flag

Air relief valve

Flush valve

Air relief valve

What other components do I need?

How can I make every drop count?

- Mulching or covering bare soil
- Monitoring soil moisture
- Water only as needed learn to read your plants
- Check system regularly
- Ensure system is operating at proper pressure

