Discussion Regarding GMA 12 Process for Appropriate Consideration of the Nine Factors During the Development of DFCs

Discussion Topics

- Joint Planning Process 3rd and 4th Cycles
- GMA 12 Revised Approach to Considering Nine Factors in the DFC Process
- Three Factors to be Discuss in the October GMA 12 meeting
 - Aquifer Uses and Conditions
 - Hydrogeological Conditions
 - Water Supply Needs and Water Management Strategies

Joint Planning Process:

- Before voting on the proposed desired future conditions ... the districts shall consider per TWC §36.108 (d)
 - Aquifer uses and conditions
 - Needs and strategies
 - Hydrologic conditions
 - Environmental impacts
 - Subsidence
 - Socioeconomic impacts
 - Private property rights
 - Feasibility
 - Anything else
- GMA 12 needs to approve DFCs not later than January 5, 2027 (HB 3278)

Joint Planning Process (con't)

• Per TWC §36.108 (d-2):

The desired future conditions ... must provide a <u>balance</u> between the highest practicable level of groundwater production and the conservation, preservation, protection, recharging, and prevention of waste of groundwater ... in the management area.

Three Factors To Be Discuss in GMA 12 Meeting in October

• **aquifer uses** or conditions within the management area, including conditions that differ substantially from one geographic area to another

 hydrological conditions, including for each aquifer in the management area the total estimated recoverable storage as provided by the executive administrator, and the average annual recharge, inflows, and discharge

 the water supply needs and water management strategies included in the state water plan

Aquifer Uses or Conditions (3rd Joint Planning Cycle)

- Aquifers
- Water Use Types
- 2018 Production by GCD by Aquifer
- Percentage of GCD Aquifer Production by Water Use Type
- Carrizo-Wilcox Aquifer not separated into aquifers for production

Aquifer Uses or Conditions (3rd Joint Planning Cycle)

Example: Queen City Information

Queen City Uses

- Groundwater primarily produced from shallow to moderately deep wells (most <100 a few up to 2,000')
- Groundwater primarily used for irrigation, domestic, and livestock
- Some used for municipal
- Some significant users:
 - Rural WSCs in METGCD
 - Town of Lincoln,
 - Landowners for livestock and domestic purposes

2018 Queen City Uses

· · · · · · · · · · · · · · · · · · ·	Approximate	Queen City 2018 G	roundwater Use	(Percent)	
	LPGCD	POSGCD*	BVGCD	METGCD	FCGCD
Irrigation	60%	0%	5%	0%	5%
Livestock	15%	14%	<5%	5%	5%
Manufacturing	0%	0%	0%	10%	0%
Mining	0%	0%	40+%	0%	0%
Muncipal	25%	86%	50+%	85%	90%
Steam-Electric Power	0%	0%	0%	0%	0%

Aquifer Uses or Conditions (4th Joint Planning Cycle)

- Options for Expanded Descriptions
 - Standardize List of Water Uses
 - TWDB
 - GCDs
 - Water Uses (Production Amounts and Locations)
 - Exempt wells
 - Permitted Wells
 - Permitted Well Locations
- Options for Expanded Considerations
 - Impact of DFC on wells by water use types (over time)
 - Average decrease saturated thickness in outcrop/unconfined
 - Average decrease in available drawdown in confined area

Hydrological Conditions (3rd Joint Planning Cycle)

- Aquifer Maps
 - Faults Locations
 - Transmissivity
 - Storage Properties
- Total Estimated Recoverable Storage by Aquifer by GCD
- Water Budgets by Aquifer by GCD

Modified from Leahy and Martin (1993)

Aquifer Uses or Conditions (3rd Joint Planning Cycle)

Example: Sparta Information

Hydraulic Conductivity

Specific Storage

Total Estimated Recoverable Storage

County	Total Storage (acre-feet)	25 percent of Total Storage (acre-feet)	75 percent of Total Storage (acre-feet)
Bastrop	2,500,000	625,000	1,875,000
Brazos	17,000,000	4,250,000	12,750,000
Burleson	16,000,000	4,000,000	12,000,000
Fayette	12,000,000	3,000,000	9,000,000
Lee	10,000,000	2,500,000	7,500,000
Leon	4,600,000	1,150,000	3,450,000
Madison	16,000,000	4,000,000	12,000,000
Robertson	1,300,000	325,000	975,000
Total	79,400,000	19,850,000	59,550,000

Water Budget for POSGCD

Management Plan requirement	Aquifer or confining unit	Results		
Estimated annual amount of recharge from precipitation to the district	Sparta Aquifer	7,423		
Estimated annual volume of water that discharges from the aquifer to springs and any surface-water body including lakes, streams, and rivers	Sparta Aquifer	4,808		
Estimated annual volume of flow into the district within each aquifer in the district	Sparta Aquifer	763		
Estimated annual volume of flow out of the district within each aquifer in the district	Sparta Aquifer	1,228		
Estimated net annual volume of flow between each aquifer in the district	Weches Confining Unit and adjacent underlying areas into the Sparta Aquifer	1,583		

Aquifer Hydrological Conditions (4th Joint Planning Cycle)

- Options for Expanded Descriptions
 - Water Budgets, Drawdown, & Available Drawdown
 - Pre-development (source of production, flow between GCDs, SW-GW)
 - Current
 - Analysis of Water Budgets by GCDs
 - Source of Water for current production
 - Changes in flow between GCDs, between surface water & groundwater
 - Analysis of Drawdown & Available Drawdowns
 - Evaluate GW resource
 - Evaluate wells (pumps setting & screens)
- Options for Expanded Considerations
 - Water Budgets, Drawdowns, and Available Drawdown for 2070 & later times
 - Account for Drawdowns for Areas of Interest (outcrops, exempt wells)
 - Decadal DFCs thresholds to guide curtailments

Water Supply Needs & Water Management Strategies (3rd Joint Planning Cycle)

- Information from 2021 Regional Water Plans
 - Supply
 - Demand
 - Surplus/Need
 - Water Management Strategies
- Permit Data from GCDs
- MAGs from TWDB Reports

State Water Plan Definitions

- Supply
 - The amount of water that can be produced with current permits, current contracts, and existing infrastructure during drought
- Demand (Net)
 - Demand of the WUG during a drought after plumbing code savings are subtracted
- Surplus/Need
 - Difference between supply and demand
- Water Management Strategies
 - Water supply projects designed to meet needs for additional water supplies during drought
 - Some are associated with demand reduction or making supplies physically or legally available to users
- Availability
 - Maximum amount of water available during a drought, regardless of whether the supply is physically or legally available

Water Supply Needs & Water Management Strategies (3rd Joint Planning Cycle): Example. POSGCD

Post Oak Savannah GCD	2020	2030	2040	2050	2060	2070	
Groundwater Supply – All Categories							
Brazos River Alluvium Aquifer	<mark>29,771</mark>	29,771	29,771	29,771	29,771	29,771	
Carrizo-Wilcox Aquifer	9,576	8,646	8,143	8,581	8,761	8,730	
Queen City Aquifer	303	306	306	306	306	306	
Sparta Aquifer	1,496	1,496	1,496	1,496	1,496	1,496	
Yegua-Jackson Aquifer	2,992	2,992	2,992	2,992	2,992	2,992	
Trinity Aquifer	102	100	98	98	96	94	
Groundwater Supply Total	44,240	43,311	42,806	43,244	43,422	43,389	
Surface Water Supply – All Categories							
Local Surface Water Supply	<mark>4,151</mark>	4,151	4,151	4,151	4,151	4,151	
Brazos River Authority Little River Lake/Reservoir System	971	959	948	947	934	921	
Brazos River Run-of-River	2,834	2,834	2,834	2,834	2,834	2,833	
Surface Water Supply Total	7,956	7,944	7,933	7,932	7,919	7,905	
Total Supply – All Categories	52,196	51,255	50,739	51,176	51,341	51,294	
Total Demand – All Categories	78,472	79,681	79,477	79,364	79,242	79,261	
Total Surplus/Need – All Categories	-26,276	-28,426	-28,738	-28,188	-27,901	-27,967	

Sponsor Entity	Water Management Strategy	Туре	Source County	Recipient County	2020	2030	2040	2050	2060	2070
CALDWELL	MUNICIPAL WATER CONSERVATION	Conservation	BURLESON	Burleson	-	83	167	239	242	246
IRRIGATION, BURLESON	IRRIGATION WATER CONSERVATION	Conservation	BURLESON	Burleson	804	1,340	1,876	1,876	1,876	<mark>1,876</mark>
MANUFACTURING, BURLESON	INDUSTRIAL WATER CONSERVATION	Conservation	BURLESON	Burleson	4	6	8	8	8	8
MANUFACTURING, BURLESON	SPARTA AQUIFER DEVELOPMENT	Groundwater	BURLESON	Burleson	25	25	25	25	25	25
SNOOK	MUNICIPAL WATER CONSERVATION	Conservation	BURLESON	Burleson	-	25	50	78	104	129
SOMERVILLE	MUNICIPAL WATER CONSERVATION	Conservation	BURLESON	Burleson	-	20	25	27	29	31
SOUTHWEST MILAM WSC	CARRIZO AQUIFER DEVELOPMENT	Groundwater	LEE	Burleson	-	17	29	27	29	38
SOUTHWEST MILAM WSC	MUNICIPAL WATER CONSERVATION	Conservation	BURLESON	Burleson	-	2	4	5	5	6
BELL MILAM FALLS WSC	MUNICIPAL WATER CONSERVATION	Conservation	MILAM	Milam	-	1	1	1	1	1
CAMERON	MUNICIPAL WATER CONSERVATION	Conservation	MILAM	Milam	-	107	218	339	449	465
IRRIGATION, MILAM	IRRIGATION WATER CONSERVATION	Conservation	MILAM	Milam	195	325	455	455	455	<mark>455</mark>

GEOSCIENCE & ENGINEERING SOLUTIONS

Water Supply Needs & Water Management Strategies (4rd Joint Planning Cycle)

- Options for Expanded Descriptions
 - Define "Needs of the State"
 - Key term in TWC §36.0015 (GCD are preferred method of groundwater management)
 - Current Permits, State Water Plans, Strategies
 - Define "Water Supply Needs"
 - Local GCD Needs
 - Local GMA 12 Needs
 - State Needs
 - Current Production versus Future Production
- Options for Expanded Considerations
 - Local Needs
 - Conservation for Future Needs (curtailment, ASR, Conjunctive Use)
 - Assessment of Sustainable Production

Questions ?

